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Frame structure [1]

Tensile weaving [4] Masonry construction [5] Roofing [6]

Drones In Fabrication/Making
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* The Flight Assembled Architecture Installation. Augugliaro et al., 2014.
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The Flight Assembled Architecture*

Four drones building a 6-m-tall foam tower
Propose pick-place state machine
Approach hard to scale up

Assume perfect knowledge of environment
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- Approach hard to scale up

Case Studies

* Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning.Qie, H. et al. 2019.



Major Limitations

- Lack of generalizability and scalability.

- Perfect knowledge of the environment
assumption

- Environmental and socio-technical
complexity of design-construction sites

Limitations



How to coordinate an uncertain number of drones for additive construction tasks in dynamic
environments, as part of an integrated human-machine construction workflow?

Research Question



A decentralized reinforcement learning control framework based on sensory input with a central
server for dispatching tasks can support multi-drone coordination for architectural construction,
and thus enable more complex human-machine construction processes.

Hypothesis



Method
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Reinforcement Learning (RL)

- Training of machine learning models to
make a sequence of decisions. The agent
learns to achieve a goal in an uncertain,
potentially complex environment.

- Itis concerned with how agents take actions
in an environment in order to maximize the
notion of cumulative reward.

Path Planning and Control

https://deepmind.com/alphago-china



https://deepmind.com/alphago-china
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Architecture of Neural Network*

RL Algorithm Details

- Policy-gradient algorithm, PPO (Proximal
Policy Optimization) to learn an optimal
collision avoidance policy.

- The architecture of policy network takes
lidar, goal position and velocity as
observation (input).

- We use convolutional layers to preprocess
lidar input.

Path Planning and Control

* Reproduced from Long, Pinxin, et al. "Towards optimally decentralized multi-robot collision avoidance via deep
reinforcement learning." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.



Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters 6o, clipping threshold e
for k=0,1,2,... do
Collect set of partial trajectories D on policy mx = m(6x)
Estimate advantages AT using any advantage estimation algorithm
Compute policy update
Oxy1 = arg mglx[,gkup(ﬁ)

by taking K steps of minibatch SGD (via Adam), where

.
5" e) = B, [Z [min(re(0)AT*, clip ((6), 1 — &1+ €) AT%)|

t=0

end for

|

PPO Algorithm*

RL Algorithm Details

- We use clipped objective for proximal policy
update.

- We use a decentralized approach which is
scalable for multiple drones.

Path Planning and Control

* Achiam, Joshua. "Advanced policy gradient methods." (2017).



RL Scenario

- Agiven environment

- Asetofagents

DS 0i8 - Aset of bases (charging, resupplying)
- Asetof targets
- Aset of threat areas

- The agents should navigate to the

designated targets while avoiding obstacles
and other agents on the 2d plane.

Path Planning and Control



Average Episode Reward

s Training the Model
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Path Planning and Control



Parent 2

Parent 1

Brick order design

Flight altitude

Wait altitude :
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Depth Camera/Lidar

Flight controller
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Drone Hardware (WIP)

Frame
- F450
Control
- Pixhawk 2.4.8
- Raspberry Pi 4
Power
- Motor (2216 KV880)
- Electronic speed control (30w)
- Propeller x 4 (1045)
- Battery (5200mah)

Drone Hardware



Drone Hardware

FA50 frame

Motor x 4

Electronic speed control x 4
Propeller x 4

Pixhawk 2.4.8

GPS module

Vibration damping pad
Radio controller
Battery

Battery charger

GPS stand

FS-CVTO1 Voltage
Collection Module
Raspberry Pi 4 board

e SD Card
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Foam Bricks
Design features to compensate for the
inaccuracy of drone localization
Specialized brick components are designed
so bricks can adjust themselves into place

Magnets:
Multiple magnets are attached onto
the brick
Further help the bricks snap into
place in both the x and y directions

Building Components
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Discrepancies between a
drone’s simulated versus real
position can cause potential
misalignments in a
pick-and-place procedure
To account for this,
specialized brick
components are designed so
bricks can adjust themselves
into place
o Caps are introduced at
the top and bottom for
vertical alignment
o Slanted edges help
bricks slide into place
in horizontal alignment
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Discrepancies between a
drone’s simulated versus real
position can cause potential
misalignments in a
pick-and-place procedure
To account for this,
specialized brick
components are designed so
bricks can adjust themselves
into place
o  Multiple magnets are
attached onto the brick
o These magnets further
help the bricks snap
into place in both the x
and y directions



8x Speed


http://www.youtube.com/watch?v=oe1T1j5nVqM

Off-site On-site

Long-term Project Workflow

- Simplified
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Construction Hardware Team
Team

On-site Project
Managers and
Schedulars




Designing and
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Although the proposed system seems promising for multiple drones to automate construction
tasks with improved efficiency, limitations still exist.

e Problem formulation limitation - the problem which is addressed in this use-case scenario is
abstracted, but in the real world, any application of this system would include other variables
such as inconsistent construction materials, unexpected and external forces, as well as
unpredictable events associated with human agents which potentially limit the
generalizability of this method

e Collaboration limitation - currently drones complete tasks independently, but in real life
scenarios, they may need to rely on each other to complete tasks like lifting heavy objects

e Robustness limitation - the driving algorithms need to be more robust to address multiple
issues such as battery failure or drastic weather conditions

e Efficiency limitation - The resource allocation algorithm currently proposed needs to be

developed more to properly and efficiently allocate resources when the number of drones
involved increases by a wide margin

Limitations
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Next Steps

Evolving the Framework

- Pushing the current framework to a more
universal platform.

- Integrated pipeline with full-stack real-time
simulation in Unity, middleware
communication through MLAgents, and
library of reinforcement learning models
using PyTorch.

- Investigating other algorithms:

- MADDPG, DDPG, Cen-Q, Cen-V

Building an Array of Drones



Re-thinking Automation in Construction Project Acknowledgments

Thanks to the following students from the M.S.
Computational Design program at CMU School of
Architecture who contributed to this project:

An Architectural Framework for
Distributed Semi-Autonomous
Construction: Using Reinforcement

Learning to Support Scalable - Yanwen Dong
Multi-Drone Construction in Dynamic - Michael Hasey
- Willa Yang

Environments

Zhihao Fang, Yuning Wu, Ammar Hassonjee,
Ardavan Bidgoli, and Prof. Daniel Cardoso Llach

= Computational Design Laboratory ACADIA 2020 | DISTRIBUTED PROXIMITIES
School of Architecture, Carnegie Mellon University



Thank you!

Stay safe!
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