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Towards a Distributed, Robotically 
Assisted Construction Framework
Using Reinforcement Learning to Support Scalable Multi-Drone 
Construction in Dynamic Environments

1

ABSTRACT
In this paper we document progress towards an architectural framework for adaptive 

and distributed robotically assisted construction. Drawing from state-of-the-art rein-

forcement learning techniques, our framework allows for a variable number of robots to 

adaptively execute simple construction tasks. The paper describes the framework, demon-

strates its potential through simulations of pick-and-place and spray-coating construction 

tasks conducted by a fleet of drones, and outlines a proof-of-concept experiment. With 

these elements the paper contributes to current research in architectural and construc-

tion robotics, particularly to efforts towards more adaptive and hybrid human-machine 

construction ecosystems.
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INTRODUCTION
Our research investigates how recent advances in deep 

learning and reinforcement learning (RL) techniques might 

help improve the performance and adaptivity of robot-

ically assisted construction systems, opening up new 

possibilities for semiautonomous technologies to support 

construction teams on- and off-site. Our vision is that 

networks of smaller, more adaptive robots might more 

flexibly and effectively assist building construction. We 

document progress towards a computational framework 

based on state-of-the-art reinforcement learning tech-

niques that enables users to define simple construction 

tasks to be executed by a variable number of robots. The 

framework follows a centralized learning, decentralized 

execution approach. On the one hand, a server supervises 

task distribution and monitors the overall progress. On 

the other, each drone independently runs an RL algo-

rithm for collision-free navigation and follows a series 

of rule-based macro actions to execute certain tasks. 

Our experimental scenario comprises a group of drones 

performing simple construction tasks—pick-and-place, 

and spray-coating—dynamically. We approach this as both 

a dynamic task-assigning problem and as a spatial one. 

We use problem modeling techniques to conceptualize a 

scenario of coordination involving multiple robots, supply 

and deployment sites, and a dynamic task list. We further 

discuss opportunities and limitations for this scenario of 

coordination in the context of the architecture-engineer-

ing-construction industries. 

In the first section of this paper we discuss the state-

of-the-art in multi-drone construction, identifying some 

shortcomings. In particular, we note the lack of a usable 

general framework for the introduction of these technolo-

gies in support of building processes. We then discuss our 

approach through an experimental scenario comprising 

both a software prototype, simulations, and progress 

towards a hardware prototype. Through simulations we 

test our software’s capacity to coordinate a small group of 

drones in two kinds of construction-related activities: pick-

and-place tasks and spray-coating. This section is followed 

by a discussion on the limitations of our approach, next 

steps, and notes on our broader vision on human-robot 

ecosystems of construction.

Background

Despite their original and ongoing applications in warfare, 

unmanned aerial vehicles (UAV), or drones, have recently 

been utilized in a variety of fields, including scientific 

research (Marris 2013), agriculture (Maes and Steppe 

2019; Zhang and Kovacs 2012), and environmental moni-

toring (Lucieer et al. 2014; Nishar et al. 2016), and have 

gained popularity among flight and aerial photography/

cinematography enthusiasts and specialists (Mademlis 

et al. 2018; Nägeli et al. 2017). A limitation of drones 

compared with industrial robots and rovers is their lower 

payload capacity, larger margins of error (Goessens, 

Mueller, and Latteur 2018), and shorter battery life. 

On the positive side, drones are more agile, can cover 

larger distances, and can reach greater heights (Chaltiel, 

Maite, and Abdullah 2018). In addition, when equipped with 

sensors (Dackiw et al. 2019) and robust path-planning 

algorithms, they can operate in a wider range of conditions. 

Moreover, as recent works have shown, groups of drones 

can be programmed to execute tasks synchronously 

and “collaborate” in scenarios such as large-scale public 

displays (Intel n.d.). Drones’ agility and flexibility can thus 

offer important advantages in architectural and construc-

tion-related tasks and, over the last decade or so, have 

attracted the attention of architectural and construction 

researchers. 

Recent research in the field of autonomous construction 

has explored drones’ potential to support construc-

tion tasks including, but not limited to, frame structure 

assembly (Lindsey, Mellinger, and Kumar 2011), brick-

laying (Augugliaro et al. 2014), 3D printing (Hunt et al. 

2014), tensile structure weaving (Ammar 2016), modular 

canopy structures (Wood et al. 2018), real-scale masonry 

construction (Goessens, Mueller, and Latteur 2018), 

roofing (Romano et al. 2019), and spraying mortar (Chaltiel 

et al. 2018). The majority of these efforts have employed a 

single drone, rather than a fleet of multiple drones. Among 

the exceptions is a 2011 project developed at the University 

of Pennsylvania comprising an array of quadcopters 

assembling truss-like structures consisting of “beams” 

and “columns” with magnets embedded at joints with a 

gripper (Lindsey, Mellinger, and Kumar 2011). The drones 

are controlled by a turn-taking algorithm that coordinates 

a pick-and-place process wherein drones take materials 

from a supply station to the construction, and assemble the 

structure following predetermined routes. 

Another example of multirobot construction, exhibited live 

at the Fonds Régional d’Art Contemporain du Centre in 

Orléans, France, is the flight-assembled architecture, an 

installation comprising a 6 m tall tower composed of 1,500 

foam modules deployed by four quadcopters (Augugliaro et 

al. 2014). Here, the researchers designed a state machine 

for additive drone-based construction: four drones worked 

collaboratively, each picking up a foam brick, transporting 

it to the building area, placing the brick at the designated 

target, and charging when needed. For planning the drones’ 
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trajectories, this project relies on a space reservation 

system preventing collisions. To avoid creating deadlocks 

when two drones try to swap positions, the team created 

separate “freeways” at different altitudes for the drones. 

Some researchers go beyond the homogeneous array of 

robots and combine multiple types of robots to address the 

limitations of drones. Felbrich et al. (2017) combined the 

accuracy of the industrial robotic arms with the reach-

ability of drones to fabricate long-span structures. 

These projects usefully demonstrate some potential 

applications of multiple drones in construction tasks. 

However, these approaches lack generalizability and 

scalability. For example, while working with predefined 

trajectories may suit certain construction types in strictly 

controlled environments, it would not be useful in dynamic 

and less structured ones—such as those characteristic 

of construction sites where multiple builders and trades-

people participate. Thus, it is important to consider how 

automated systems may interface with human teams at the 

design, operation, and maintenance stages. The literature 

in architectural and construction robotics is also sparse 

in examples of dynamic human-robot interactions. An 

exception is (Wood et al. 2018), who propose a model of 

interaction between the users and their UAV configurable 

architectural system where users could directly manipu-

late the system behavior by defining the growth patterns. 

They also propose an indirect interface between the users 

and the system through a learning mode, where the system 

could potentially collect data to study the patterns of 

interactions between users, environment, and their system. 

However, these researchers do not take concrete steps 

towards implementation.

HYPOTHESIS
We hypothesize that reinforcement learning techniques 

under a “centralized learning, decentralized execution” 

paradigm can enable a more flexible and generalizable 

software framework for robotically assisted construc-

tion that is more resilient to the dynamic nature of actual 

construction environments. Our technical approach relies 

on a server for task scheduling, progress monitoring, and 

drone management where each drone is equipped with 

reinforcement learning-based navigation algorithms for 

collision avoidance, and a library of rule-based macro 

actions, which are sequences of steps for accomplishing 

discrete subtasks such as building, resupplying, charging, 

and deviation handling. In addition, we use proximal 

policy optimization (PPO), a policy-based reinforcement 

learning algorithm (Schulman et al. 2017), to train a 

variable number of drones to navigate without collision. 

Coordination can thus be achieved in task execution time 

through specific task order and waiting mechanisms. 

Combining these technical strategies, a software frame-

work can open up opportunities for more adaptive and 

efficient systems for robotically assisted construction and 

to interface dynamically with construction teams on site.

METHODS
Technical Framework

Our framework has a server for task distribution, prog-

ress monitoring, and drone management, allowing each 

drone to operate in a decentralized fashion. Each drone 

runs an RL-based navigation and collision avoidance 

algorithm and relies on rule-based macro actions to 

accomplish specific subtasks such as charging, resup-

plying, and placing objects (Fang 2020). Following the 

state machine proposed by Augugliaro et al. (2014), each 

drone follows the following states: (1) moving to the supply 

station for resupply; (2) navigating to the designated target 

position to install the blocks; and then, depending on its 

remaining battery, (3) issuing another task request; or 

(4) moving to the charging station to charge or change its 

battery.

Traditionally, centralized methods may suffer from 

combinatorial complexity when the number of robots 

grows, whereas decentralized methods may suffer from 

an incomplete solution with limited quality guarantees. 

Despite methods such as MAPP (Wang and Botea 2011), 

FAR (Wang and Botea 2008), and WHCA* (Silver 2005), the 

aforementioned limitations are inherent in the problem 

context. Given these limitations, reinforcement learning 

(RL) has emerged as an alternative approach in recent 

years. Through experiments, we are able to observe some 

key caveats that may improve generalizability and scal-

ability concurrently, combining the advantages of both 

sides.

Our proposed system is more scalable, since introducing 

new drones to the system will not add significant load 

to the central server (Fig. 2). Given enough resources, 

the framework supports a virtually unlimited number of 

drones as well as various scales of construction tasks. RL 

navigation and collision avoidance makes the framework 

adaptable to a variety of environments, and is thus gener-

alizable as long as tasks are structured as macro actions, 

following the state machine. Although this research is 

focused on scenarios with multiple drones, the problem 

itself only includes the simplest setting of multi-agent 

system (MAS), i.e., homogeneous agents without inter-

agent communication or collaboration. Therefore at 

this stage, this research does not consider other topics 

featured in common MAS research, i.e., communication, 

Towards a Distributed, Robotically Assisted Construction Framework Fang et al.
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2 The proposed framework and its 
components.

3 Brick dependency concept.

4 Waiting mechanism.

5 Drone altitude allocation.

interaction, fault tolerance, adaptivity, cooperative and 

competitive environment.

Multi-Drone Coordination

In our framework, three auxiliary procedures support the 

coordination of multiple drones: (1) task order, (2) waiting 

mechanisms, and (3) altitude allocation.

A task order algorithm determines the execution order 

of tasks. For instance, in a bricklaying process, the task 

order algorithm determines which bricks should be 

installed first and which ones should be followed. We use 

a directed acyclic graph (Fig. 3) to encode bricklaying 

order as a series of dependencies. Bricks at the bottom 

3

5

4

are considered as “parent” items that should be laid before 

the “children” at the top. In addition, the drone’s dimen-

sions play a key role in defining such dependencies, as the 

system needs to constantly determine whether there is 

enough space for the drone to place the next brick. During 

construction, the server will only schedule the placement 

of bricks whose “parent” bricks are successfully installed. 

This approach eliminates the possibility of collision between 

the drone and other bricks during the construction process.

This task is presented to illustrate how simple construction 

tasks can be defined within the framework and is not meant 

to advocate drone bricklaying in particular as a construc-

tion methodology.

A waiting mechanism is designed to let drones take turns to 

resupply (Fig. 4). We define each supply station surrounded 

by a circular waiting zone. If a drone needs to resupply at 

an already occupied station, it can hover at the nearest 

available waiting position until the system summons it in 

a first in, first out (FIFO) order. Every time a drone finishes 

resupplying at the station, the server will signal the first 

drone waiting in the queue to initiate the resupplying 

process.

To simplify the path-planning process and to reduce it to 

a 2D problem, we assign a specific altitude to each drone. 

This assignment minimizes the down-wash effect among 

the drones. Additionally, a waiting altitude is defined below 

the flight altitude for drones to wait at the supply station, 

reducing the risk of waiting drones being approached by 

other active drones (Fig. 5).

Reinforcement Learning for Navigation

An RL model controls drones’ navigation. Its objective 

is to learn an optimal policy such that drones are able 

to navigate from a starting to a target position without 

collision, including other drones, humans, walls, obsta-

cles, etc., which are detected by the sensors at runtime. 

We use a proximal policy optimization (PPO) reinforcement 

learning model adapted from (Long et al. 2018), to learn the 

optimal policy. Compared with other uses of multi-agent 

reinforcement learning models such as Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG), for example (Qie 

et al. 2019), we focus on the scalability of drone numbers, 

where communication among peer drones is not a major 

concern. Therefore, all the drones share the same RL 

model.

We modeled the problem in a software simulation envi-

ronment based on the implementation of Multi-Agent 

Particle Environment (Lowe et al. 2017), an OpenAi Gym 

2
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environment featuring a multi-agent particle world with a 

continuous observation and action space along with some 

basic simulated physics. The environment is defined as a 

2.5D world, where the drone is allowed to fly only on either 

a horizontal plane during navigation or along a vertical axis 

to take off or land.

During the training phase, observations from different 

drones are collected into a common buffer in a decentral-

ized manner before feeding into the neural network. The 

network input contains three types of observations: (1) 

simulated lidar ray data; (2) drone velocity; and (3) relative 

position of the target. Lidar data is specifically encoded 

with two CNN layers before concatenating with velocity 

and position. The network is updated using a composite 

loss that takes into account generalized advantage estima-

tion (GAE) in a clipped manner (Schulman et al. 2017). The 

network outputs an acceleration vector for the drone’s 

next movement. For better generalization, we also added 

Gaussian sampling.

The drone is rewarded if it reaches its target or makes 

an approaching step towards it, and it is penalized for 

getting away from the target or collision. For the criteria 

of reaching the target, the distance between the drone 

and its target should be within a tolerance distance and 

the velocity of the drone should be lower than a threshold. 

This ensures drones do not overpass the target because of 

inertia.

RL Training

We use a two-stage training method to learn the policy. 

The first stage comprises five agents in a randomly gener-

ated scenario. In every episode, five random targets, each 

associated with an independent drone, are generated on a 

2D square arena. Each drone is expected to reach its target 

within a maximum limit of time steps. Later, 10 agents were 

trained in a scenario with a number of sparsely distributed 

threats. We trained the model for a total of 50 thousand 

episodes. We tested the model on 20 agents on a 20 × 20 m 

square arena with six randomly generated obstacles (Fig. 

6). The results show that the model is robust to scale up to 

let more agents reach targets without collision. Compared 

with other methods (i.e., MADDPG, DDPG), the increase in 

the number of agents will not have a drastic effect on the 

training time.

EXPERIMENTS
We tested our framework in simulations of two hypothet-

ical construction activities: bricklaying and spray-coating. 

The simulations were designed to test the RL algorithm’s 

capacity to control each drone autonomously and inde-

pendently from the server after being assigned to a task.

Bricklaying Simulation

A curved brick wall modeled in Rhinoceros and Grasshopper 

holds metadata (i.e., position, orientation, type, and depen-

dency) for each brick, which are entered as inputs into the 

control framework. The test site comprises charging and 

supply stations, each with designated waiting areas. In the 

simulation, drones are deployed into charging stations prior 

to assembly. Four ”threats” are defined in the working area 

to account for common obstacles in a construction site 

such as columns, stacks of materials, walls, and humans. 

Based on multiple tests, the optimal number of drones in this 

scenario was set to 10. We observed that despite the robust-

ness of the RL algorithm to control the drones, crowded 

environments will result in resource competition between 

the drones and eventually lead to a significant waste of time 

in the resupply or charging queues.

6 Average episode reward during the training model (left); evaluation of 20 agents reaching their targets (right). 6

Towards a Distributed, Robotically Assisted Construction Framework Fang et al.
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7 Four snapshots of the facade coating simulation, representing another use case scenario of the multi-drone framework. 7

In this experiment (Fig. 1), the framework was able to 

successfully decompose the task of building the curved 

wall into subtasks based on the units, distribute these tasks 

among multiple drones, and execute them without collisions 

in an environment that the drones had not “seen” before. 

Notably, the experiment showed an improvement in scal-

ability over Augugliaro et al. (2014), which incorporates 

only four drones, and only allows two to fly at the same time. 

Our framework allows all 10 drones to operate efficiently 

and without collision at the same time. The experiment thus 

demonstrates the scalability and extensibility of the system. 

Facade Coating Simulation

We also tested the system in a facade coating simulation. 

Following the outline of the pick-and-place state machine, 

drones are supposed to refill spray material and spray at 

designated locations. We use six drones to coat a dome-like 

object with another color (Fig. 7). Though different from 

bricklaying, the simulation is smooth and it shows how the 

system can be utilized in different scenarios.

The simulation demonstrates that the proposed navigation 

algorithm can be efficiently scaled up to control a flock of 

drones until they face a logistics bottleneck, e.g., charging 

and resupply limitations. Accordingly, we expect the algo-

rithm to be efficiently scalable until the drones exhaust the 

logistical resources or hit the physical limitations of the 

work environment. Regarding the generalizability of the 

algorithm, we are actively working to adapt the algorithm to 

control unmanned ground vehicles (UGV) in a construction 

manufacturing scenario, which will be reported in a sepa-

rate publication.

Progress Towards a Proof-of-Concept Implementation

We are currently developing the hardware setup to test the 

framework in a physical proof-of-concept implementation. 

The proposed hardware setup is designed solely to test 

the path-planning algorithm. However, deploying drones 

in indoor and unknown environments in close proximity to 

human users requires the use of adequate safety features 

for indoor and unpredictable environments (Shahmoradi 

et al. 2020), such as safety boxes and collision avoidance 

algorithms.

We developed a quadcopter drone that meets the specific 

functional and performance requirements that cannot be 

achieved by off-the-shelf products. Such requirements 

include a 500-gram payload capacity, integration with RL 

high-level flight commands, customizable flight control, 

telemetry hardware integration, and expansion points for 

attaching a gripper arm. 

The drone is built on a lightweight F450-family frame with 

various attachment points for custom hardware integra-

tion. Motors are chosen to provide sufficient power to 

lift the 1,500 grams of drone empty weight as well as an 

additional 500 grams of payload. The selected battery pack 

can provide approximately 15 minutes of fly time at this 
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payload. A GPS/compass module is used to maintain real-

time positioning in open spaces. To improve accuracy in 

real-time localization, this positioning system is combined 

with motion capture markers. A Pixhawk flight controller 

connected to an onboard radio transmitter for the flight 

control enables manual override through a handheld radio 

remote controller unit. In addition to the flight controller, 

a Raspberry Pi 4 board is used to relay high-level flight 

control commands between the RL algorithm running on 

a remote computer and the Pixhawk board controller via 

the Wi-Fi network. To monitor real-time flight data, a radio 

telemetry device connected to the Pixhawk controller 

collects and relays flight data to a ground-based computer. 

In addition, the drone is equipped with an underside custom 

arm to accurately pick up, transport, and release blocks. 

The arm is designed for holding solenoid electromagnet 

modules for picking blocks. Two electromagnets are 

attached to the two ends of the custom arm. 

Custom-designed bricks have been designed and fabri-

cated for use in this experiment. Each brick is equipped 

with a 1 × 1 in steel plate on its pickup point. A solenoid 

actuator controls the behavior of electromagnets on the 

arm to attract and release the steel plate on the designated 

pick and place points, respectively. In order to account for 

discrepancies between the drones’ simulated location and 

their real location during the operation, these customized 

bricks have slanted faces, pointed caps, and embedded 

magnets on all faces so that the blocks can self-align into 

position when placed (Fig. 8). 

DISCUSSION
Overview of Contributions

This paper presented a framework based on reinforcement 

learning techniques under a “centralized learning, 

decentralized execution” paradigm that enables a more 

flexible and generalizable approach to robotically assisted 

construction. We developed and trained a reinforcement 

algorithm for semiautonomous path planning for UAVs in 

dynamic environments, showing through simulations the 

successful, collision-free execution of two construction 

activities: bricklaying and spray-coating. Improving 

on previous literature, the RL model serving as the 

framework’s back-end proved to be successful with a 

variable number of drones, and without prior knowledge 

of the obstacles in the environment. In addition to these 

simulations, we discussed progress towards a hardware 

prototype for testing the framework in practice. 

Limitations and Next Steps

While the real-world testing of the framework has been 

delayed by the pandemic, we expect to deploy it and 

document results in the spring of 2021. While the RL 

algorithm proved to be successful in the simulations, we 

are not expecting to find one universal trained model to 

address all construction scenarios and environments. 

Instead, our framework entails the need to develop a 

growing library of RL models accounting for the specific 

characteristics of different construction environments 

and tasks. This will require close studies of such 

environments. At a technical level, we intend to optimize 

the framework for on-the-edge computing using the 

Raspberry Pi board in order to generate high-level flight 

commands onboard. In addition, we intend to replace the 

temporary motion capture-based localization method with 

lidar scanners to accurately scan the environment and 

detect peer drones, obstacles, and human agents in real 

time. 

While our interest is in creating systems that support 

“real” activities on site, the tasks we accomplished in this 

paper are quite simple compared to those taking place on 

actual construction sites. However, we believe that our RL 

framework provides the flexibility to incorporate a greater 

8 Design development of drone-compatible building components and 
illustration of magnetic-based drone gripping mechanism.

9 An illustration of the long-term vision for a distributed robotically assisted 
construction framework. 

8 9
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degree of complexity, including changing environmental 

conditions, human workers, machinery, and scaffolding. 

Further work needs to be done to be able to test for these 

contingencies.

As discussed before, the limited payload capacity of drones 

limits their applicability to actual construction scenarios. 

This could be addressed by including new macro actions 

that entail the collaboration of multiple drones in carrying 

a single component. While this scenario is interesting, our 

framework is flexible, and we are currently in the process 

of adapting it to other types of robots and autonomous 

vehicles with greater carrying capacity.

Human-Robot Ecosystems of Construction: A Broader 

Vision for the Future

The framework described in this paper contributes to 

current efforts towards robotically assisted construction, 

and towards a longer-term vision of human-machine 

construction ecosystems where human builders are 

supported by semiautonomous technologies. The pipeline 

diagram in Figure 10 conceptualizes such a vision by 

speculating on how roles might be redistributed across 

human experts and nonhuman actors in a design and 

construction context. Off-site teams consisting of 

component manufacturers, architects, engineers, and the 

BIM team—all of whom collectively design and model the 

structure to be built—might be joined by simulation and 

robotics experts analyzing the building model and using 

it to identify and define tasks apt for robotic execution. 

On-site teams including conventional construction roles 

such as construction laborers, project supervisors, and 

managers, material suppliers, as well as a dedicated team 

of drone hardware experts, might be joined by robotically 

assisted construction experts in charge of programming, 

supervising, and maintaining robotic systems on site. 

Shaping these emergent roles and contributing to hybrid 

and humane construction ecosystems is an important task 

for researchers at the intersection of architecture and 

computing today.
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