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Background and Challenge

e Rewards play an essential role in reinforcement learning.

e In contrast to rule-based game environments with well-defined reward functions,
real-world robotic applications, such as contact-rich manipulation, lack explicit
reward.

e Previous effort has shown that it is possible to algorithmically extract dense rewards
directly from multimodal observations.

e In this paper, we aim to extend this effort by proposing a more efficient and robust
way of sampling and learning.



Core Ildea

Similar to method proposed in [1] by
Wu et al, we aim to extract a task
progress variable.

pE [O, 1]

It is extracted from multimodal sensory
data (camera images, force/torque), by
self-supervised learning.

We use p as a dense reward to guide
reinforcement learning in contact-rich
manipulation tasks.
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Our Approach

1. Temporal Variant Forward Sampling (TVFS)

e We aim to sample a tree of multimodal
observations from an expert
demonstration with a physical Sampled Actions ——  Demo Actions ——»
simulator for self-supervised learning.

e The sampling is controlled with
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o It captures common patterns of \a N\ ~.
manipulation tasks.

o Sampled actions do not diverge too much
from the potential distribution of an Interval Seed
expert demonstration.

o Sampled actions are mostly progressing
forward.
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Our Approach
2. Self-Supervised Representation Learning

Task progress is structured with
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Prior work propose to learn the
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representation through explicitly
enforcing temporal order through a absge
triplet loss function.

We propose a novel architecture to

learn representation by utilizing

dynamic relation among pairs of

adjacent observations.
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Experiments | Validation

rollout #1 succ rollout #14 fail

e \We visualize and validate our dense
reward with a successful trajectory

(upper left) and a failed trajectory
(upper right).
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e We examine the case of an inexpert
demonstration in door-opening
(bottom). Our dense reward provide
more feedback than distance reward in
“plateauv” trial stages.
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Experiments | Benchmark

e We have chosen the door-opening task,
and SAC [2] as the RL algorithm for
benchmarking.

e We compared three types of rewards,
o our dense reward,
o hand-crafted distance reward
o sparse binary reward.

e Preliminary results show that our
dense reward leads to faster
convergence and more training
stability.
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Conclusion and Future Work

e We propose an improved framework for learning dense reward for contact-rich
manipulation tasks.

e For future work, we intend to conduct more ablation studies regarding the framework's
adaptability and modalities.

e We are also curious about the framework’s performance in tasks with non-
deterministic goal states.



Reference

[1] Wu, Zheng et al. “Learning Dense Rewards for Contact-Rich Manipulation Tasks.” 2021
IEEE International Conference on Robotics and Automation (ICRA) (2021): 6214-6221.

[2] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., ... € Levine, S. (2018). Soft
actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905.



Learning Dense Reward with Temporal Variant Self-
Supervision

Yuning Wu, Jieliang Luo, Hui Li

Carnegie

Mellon o4 AUTODESK

University



