PARKITE

An Architectural Framework for Distributed Semi-Autonomous Construction

Using Reinforcement Learning to Support Scalable Multi-Drone Construction in Dynamic Environments

Zhihao Fang, Yuning Wu, Ammar Hassonjee, Ardavan Bidgoli, Daniel Cardoso Llach

Computational Design Laboratory School of Architecture, Carnegie Mellon University acadia

ACADIA 2020 // October 24-30, 2020 // Online + Global

An Architectural Framework for Distributed Semi-Autonomous Construction

Using Reinforcement Learning to Support Scalable Multi-Drone Construction in Dynamic Environments

Zhihao Fang, Yuning Wu, Ammar Hassonjee, Ardavan Bidgoli, Daniel Cardoso Llach

ACADIA 2020 | DISTRIBUTED PROXIMITIES

Zhihao Fang MS Student zhihaof@andrew.cmu.edu

Yuning Wu PhD Student yuningw@andrew.cmu.edu

Ammar Hassonjee B.Arch Student ahassonj@andrew.cmu.edu

Ardavan Bidgoli PhD Candidate abidgoli@andrew.cmu.edu

Daniel Cardoso Llach, Ph.D. Associate Professor dcardoso@andrew.cmu.edu

ACADIA 2020 | DISTRIBUTED PROXIMITIES

Frame structure [1]

Bricklaying [2]

3D printing [3]

Tensile weaving [4]

Masonry construction [5]

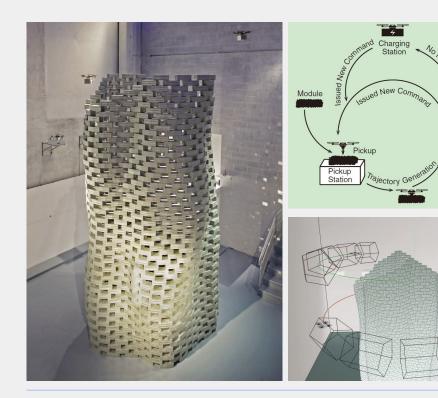
Roofing [6]

Drones In Fabrication/Making

[1] Lindsey, Quentin, Daniel Mellinger, and Vijay Kumar, 2012.

[2] Augugliaro, Frederico, Sergei Lupashin, Michael Hamer, Cason Male, Markus Hehn,

Mark W. Mueller, Jan Sebastian Willmann, Fabio Gramazio, Matthias Kohler, and Raffaello D'Andrea. 2014. [3] Hunt, Graham, Faidon Mitzalis, Talib Alhinai, Paul A. Hooper, and Mirko Kovac. 2014. [4] Ammar, Mirjan. 2016.
[5] Goessens, Sébastien, Caitlin Mueller, and Pierre Latteur. 2018.
[6] Romano, Matthew, Yuxin Chen, Owen Marshall, and Ella Atkins. 2019.



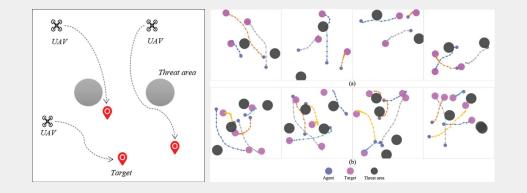
The Flight Assembled Architecture*

- Four drones building a 6-m-tall foam tower
- Propose pick-place state machine
- Approach hard to scale up
- Assume perfect knowledge of environment

Case Studies

Placement

Tower



Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning*

- Real-time drone target assignment and path planning
- Based on MADDPG
- Agent-level observation
- Approach hard to scale up

Case Studies

Major Limitations

- Lack of generalizability and scalability.
- Perfect knowledge of the environment assumption
- Environmental and socio-technical complexity of design-construction sites

Limitations

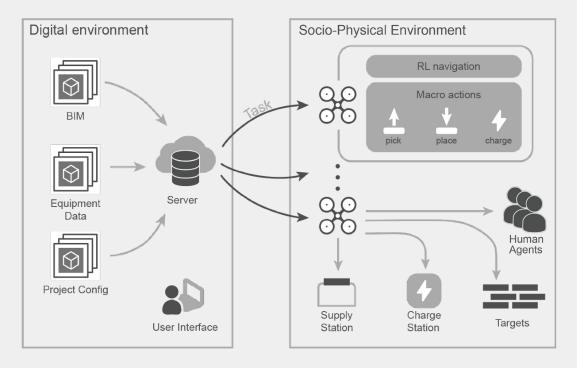
How to coordinate an uncertain number of drones for additive construction tasks in dynamic environments, as part of an integrated human-machine construction workflow?

Research Question

A decentralized reinforcement learning control framework based on sensory input with a central server for dispatching tasks can support multi-drone coordination for architectural construction, and thus enable more complex human-machine construction processes.

Hypothesis

Method



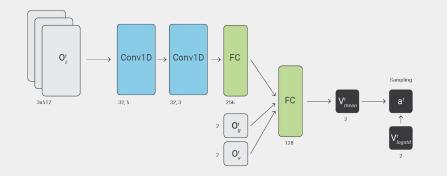
Technical Framework

Reinforcement Learning (RL)

- Training of machine learning models to make a sequence of decisions. The agent learns to achieve a goal in an uncertain, potentially complex environment.
- It is concerned with how agents take actions in an environment in order to *maximize the notion of cumulative reward*.

Path Planning and Control

* AlphaGo, AlphaZero, AlphaGo in China, (2017). ** Images from: <u>https://deepmind.com/alphago-china</u> & https://www.alphagomovie.com/



Architecture of Neural Network*

RL Algorithm Details

- Policy-gradient algorithm, PPO (Proximal Policy Optimization) to learn an optimal collision avoidance policy.
- The architecture of policy network takes lidar, goal position and velocity as observation (input).
- We use convolutional layers to preprocess lidar input.

Path Planning and Control

* Reproduced from Long, Pinxin, et al. "Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϵ for k = 0, 1, 2, ... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update $\theta_{k+1} = \arg \max_a \mathcal{L}_{\theta_k}^{CLIP}(\theta)$

by taking K steps of minibatch SGD (via Adam), where

$$\mathcal{L}^{\textit{CLIP}}_{ heta_k}(heta) = \mathop{\mathbb{E}}\limits_{ au \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(heta) \hat{A}^{\pi_k}_t, \operatorname{clip}\left(r_t(heta), 1-\epsilon, 1+\epsilon
ight) \hat{A}^{\pi_k}_t
ight)
ight]
ight]$$

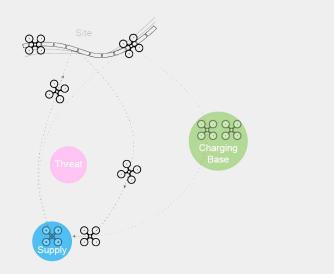
end for

PPO Algorithm*

RL Algorithm Details

- We use clipped objective for proximal policy update.
- We use a decentralized approach which is scalable for multiple drones.

Path Planning and Control

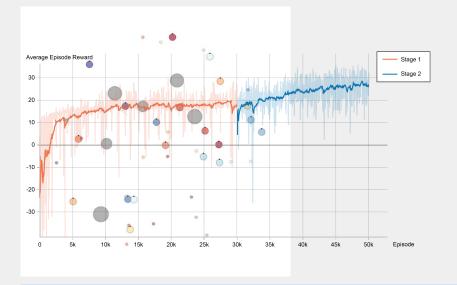


RL Scenario

_

- A given environment
- A set of agents
- A set of bases (charging, resupplying)
- A set of targets
- A set of threat areas
- The agents should navigate to the designated targets while avoiding obstacles and other agents on the 2d plane.

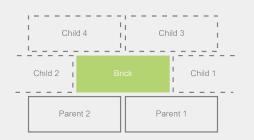
Path Planning and Control



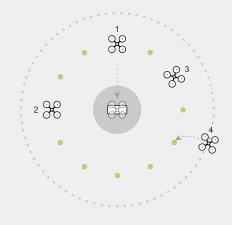
Training the Model

- Two-stage training, curriculum learning:
 - 1st: 5 agents
 - 2nd: 10 agents + threat areas
- Evaluation:
 - 20 agents

Path Planning and Control





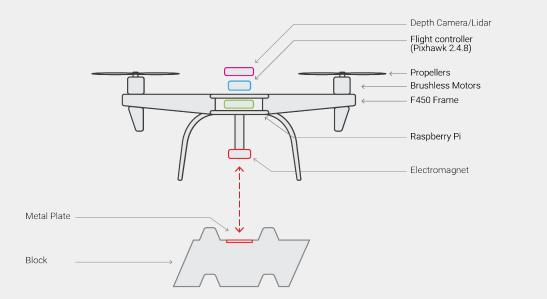


Brick order design

Altitude management

Waiting mechanism

Multi-drone Coordination



Drone Setup

- Current state
- Complete setup

Drone Hardware

Drone Hardware (WIP)

Frame

- F450

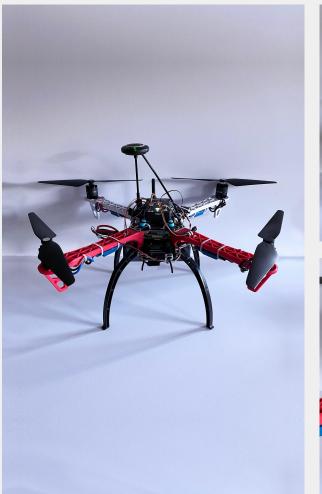
Control

- Pixhawk 2.4.8
- Raspberry Pi 4

Power

- Motor (2216 KV880)
- Electronic speed control (30w)
- Propeller x 4 (1045)
- Battery (5200mah)

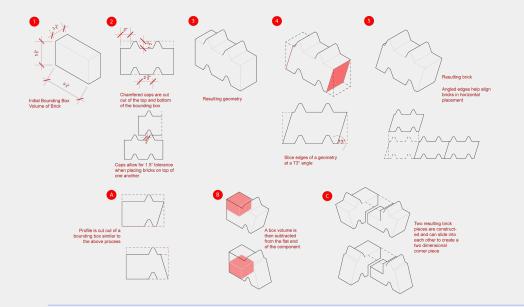
Drone Hardware





Drone Hardware

- F450 frame
- Motor x 4
- Electronic speed control x 4
- Propeller x 4
- Pixhawk 2.4.8
- GPS module
- Vibration damping pad
- Radio controller
- Battery
- Battery charger
- GPS stand
- FS-CVT01 Voltage Collection Module
- Raspberry Pi 4 board
- SD Card



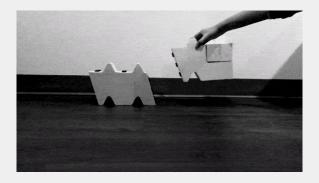
Foam Bricks

- Design features to compensate for the inaccuracy of drone localization
- Specialized brick components are designed so bricks can adjust themselves into place

Design features:

- Caps are introduced at the top and bottom for vertical alignment
- Slanted edges help bricks slide into place in horizontal alignment

Building Components



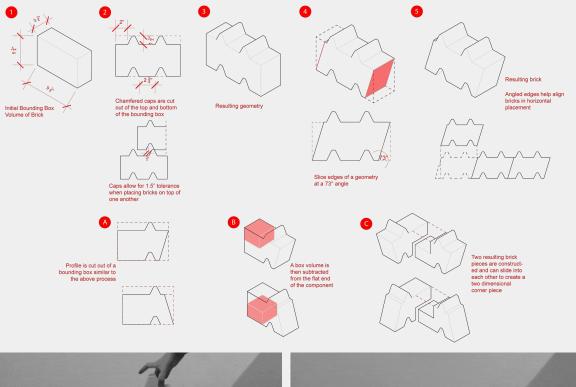
Foam Bricks

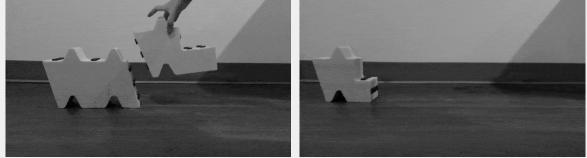
- Design features to compensate for the inaccuracy of drone localization
- Specialized brick components are designed so bricks can adjust themselves into place

Magnets:

- Multiple magnets are attached onto the brick
- Further help the bricks snap into place in both the x and y directions

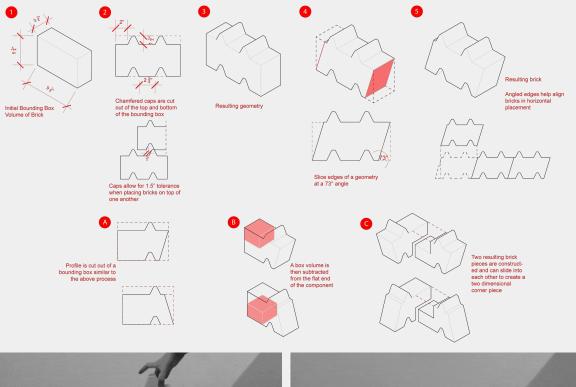
Building Components

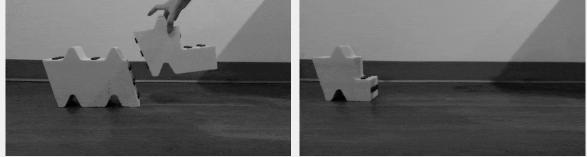




Building Components

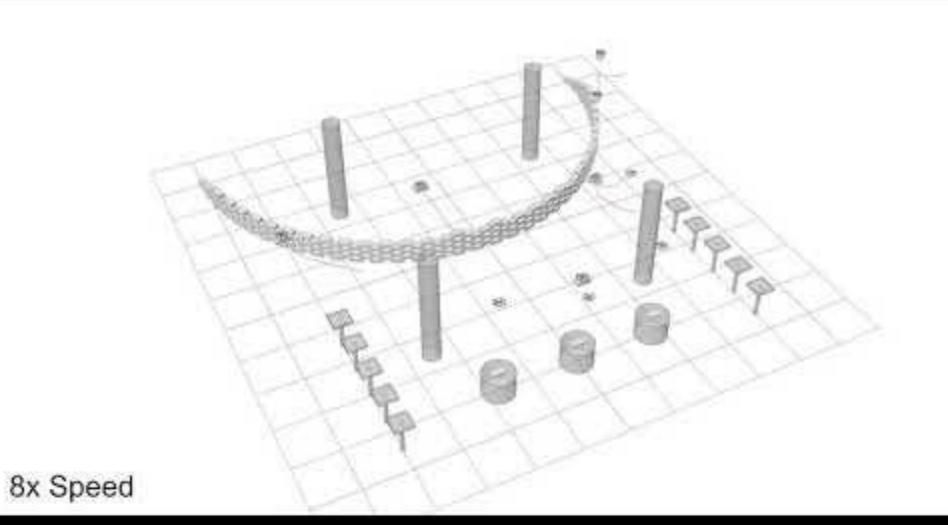
- Discrepancies between a drone's simulated versus real position can cause potential misalignments in a pick-and-place procedure
- To account for this, specialized brick components are designed so bricks can adjust themselves into place
 - Caps are introduced at the top and bottom for vertical alignment
 - Slanted edges help bricks slide into place in horizontal alignment

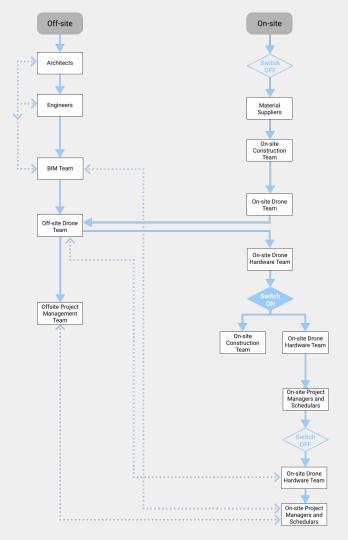




Building Components

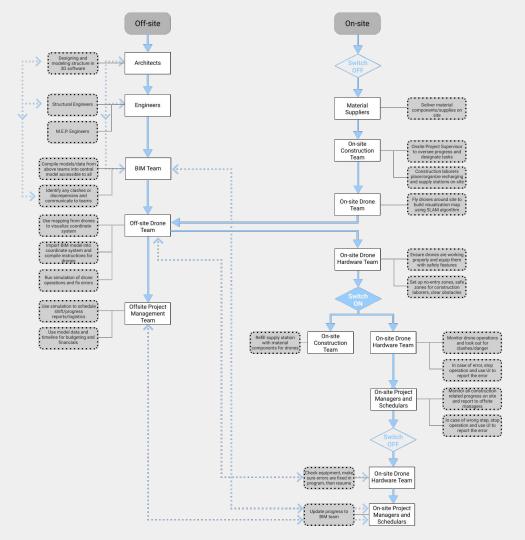
- Discrepancies between a drone's simulated versus real position can cause potential misalignments in a pick-and-place procedure
- To account for this, specialized brick components are designed so bricks can adjust themselves into place
 - Multiple magnets are attached onto the brick
 - These magnets further help the bricks snap into place in both the x and y directions





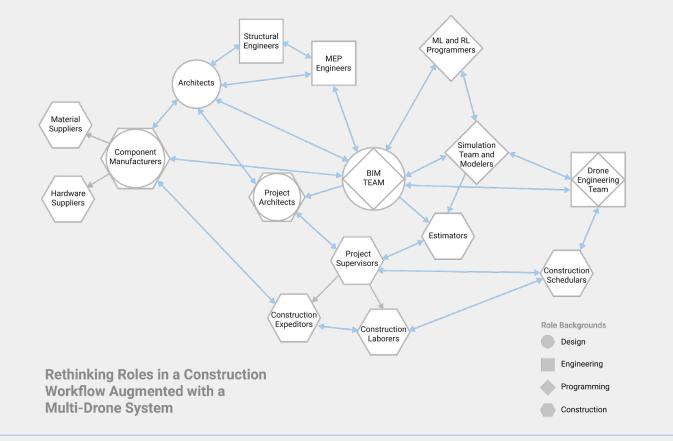
Long-term Project Workflow

- Simplified

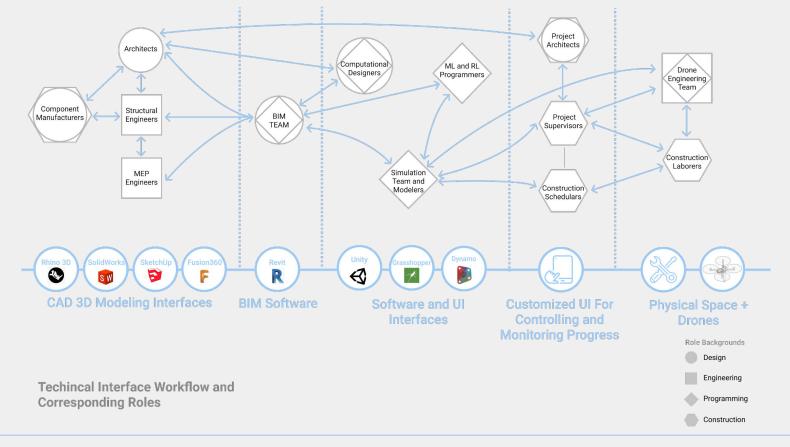


Long-term Project Workflow

- Extended



Human Roles in the Framework

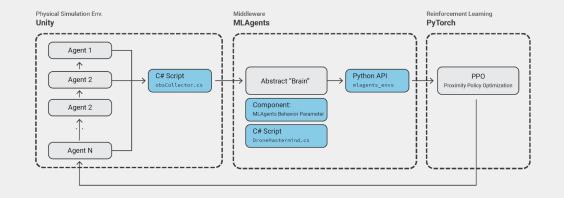


Technical Interface and Human Roles

Although the proposed system seems promising for multiple drones to automate construction tasks with improved efficiency, limitations still exist.

- **Problem formulation limitation** the problem which is addressed in this use-case scenario is abstracted, but in the real world, any application of this system would include other variables such as inconsistent construction materials, unexpected and external forces, as well as unpredictable events associated with human agents which potentially limit the generalizability of this method
- **Collaboration limitation** currently drones complete tasks independently, but in real life scenarios, they may need to rely on each other to complete tasks like lifting heavy objects
- **Robustness limitation** the driving algorithms need to be more robust to address multiple issues such as battery failure or drastic weather conditions
- **Efficiency limitation** The resource allocation algorithm currently proposed needs to be developed more to properly and efficiently allocate resources when the number of drones involved increases by a wide margin

Limitations



Evolving the Framework

- Pushing the current framework to a more universal platform.
- Integrated pipeline with full-stack real-time simulation in Unity, middleware communication through MLAgents, and library of reinforcement learning models using PyTorch.
- Investigating other algorithms:
 - MADDPG, DDPG, Cen-Q, Cen-V

Building an Array of Drones

Next Steps

Re-thinking Automation in Construction Project

An Architectural Framework for Distributed Semi-Autonomous Construction: Using Reinforcement Learning to Support Scalable Multi-Drone Construction in Dynamic Environments

Zhihao Fang, Yuning Wu, Ammar Hassonjee, Ardavan Bidgoli, and Prof. Daniel Cardoso Llach

Acknowledgments

Thanks to the following students from the M.S. Computational Design program at CMU School of Architecture who contributed to this project:

- Yanwen Dong
- Michael Hasey
- Willa Yang

Zhihao Fang, Yuning Wu, Ammar Hassonjee, Ardavan Bidgoli, Daniel Cardoso Llach

ACADIA 2020 | DISTRIBUTED PROXIMITIES